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A nonlinear functional differential equation in

Banach Space with applications to materials with fading memory

by

William J. Hrusa

Abstract

We study a nonlinear functional differential equation in
Banach space. This equation is an abstract form of the equations
of motion for nonlinear materials with fading memory. Its basic
structure is hyperbolic in character so that global smoth solutions
sho1ld not be expected in general. Memory effects, however,
may induce a dissipative mechanism which, although very subtle,
is effective so long as the solution is small.

We show that if the memory 1s dissipative in an appropriate
sense, then the history value problem associated with our
equation has a unique global smooth solution provided the initial
history and forcing are suitably smooth and small. The proof
combines a fixed point argument to establish local existence
with a chain of global a priori "energy-type' estimates.

The abstract results are then applied to establish global
existence of smooth solutions to certain history value problems
associated with the motion of nonlinear materials with fading
memory, under assumptions which are realistic within the

framework of continuum mechanics.
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Chapter 1. Introduction

In continuum mechanics, the motion of a body is
governed by a set of balance laws common to all continuous
(mechanical) media, regardiess of their composition. The type
of material composing a body is characterized by a constitutive
assumption which relates certain of the unknown fields appearing
in the balance laws.

For nonlinear elastic materials, the balance laws lead to
systems of quasilinear hyperbolic partial differential equations.
A well-known feature of such systems is that they do not
generally possess globally defined smooth solutions, no matter
how smooth the initial data are. It seems interesting to
consider situations where a constitutive assumption incorporates
a dissipative mechanism in conjunction with an "elastic-type"
response, and to study the effects of dissipation on solutions
to the balance laws. In order to avoid purely technical
complications and highlight the main ideas, we confine our
study to motions which can be described with a single spatial

coordinate.

Consider now the longitudinal motion of a one-dimensional
body with reference configuration* 4, a connected open subset

of]Rl. Let u(x,t) denote the displacement at time t of the

particle with reference position x (i.e. x+u(x,t) is the

position at time t of the particle with reference position x),

—
We assume that the reference configuration is a natural state.



in which case the strain is given by* e(x,t) = ux(x,t).
For simplicity, we assume that the body is homogeneous

with unit reference density. The motion is then governed by
(1.1) u (x,t) =0 (x,t) + £(x,t),

where o is the stress and f is the (known) body force. A
constitutive assumption relates the stress to the motion. We
consider here only materials with the property that the stress
at a material point x can be determined from the temporal history
of the strain at x.

If the body is elastic, then o(x,t) = ¢(e(x,t)), where ¢
is an assigned smooth function withJr &(0) > 0, and the result-

ing equation of motion is

(1.2) Uy, = o(u )+ £,

Lax [10] and MacCamy and Mizel [12] have shown that the initial
value problem for (1.2) (with f=0) does not generally have a
global (in time) smooth solution,no matter how smooth the initial
data are.

For a viscoelastic body of the rate type, the stress at
time t depends on the strain as well as the strain rate at time
t. A typical constitutive assumption is

o(x,t) = ¢(e(x,t)) + 2z, (x,t), where ¢ is as before and X is a

Here and throughout, subscrints x and t indicate partial
derivatives.

* A dot iz used to denote the derivative of a function of a

single variable.
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positive constant, which leads to the equation of motion

(1.3) Uy © d>(ux)x + Auxtx + f.

Global existence uf smooth solutions to certain appropriate
initial-boundary value problems for (1.3) has been established
by Greenberg, MacCamy and Mizel [ 9], and Dafermos*[6 ],
assuming ¢, f, and the initial data are sufficiently smooth.
Viscosity of the rate type is so powerful that global smooth
solutions exist even if the initial data and body force are
large.

A more subtle type of dissipation is induced by memory
effects. For a material with memory, the stress at time t
depends, in some fashion,on the history up to time t of the
strain. If deformations that occurred in the distant past have
less influence on the present stress than those which occurred
in the recent past, we say the material has '"fading memory'.

A simple model for a material with fading memory is
provided by linear viscoelasticity of the Boltzmann type, which

is defined by the constitutive equation

(1.4) o{x,t) = ce(x,t) - J g(s)e(x,t-s)ds.
0

Here ¢ is a positive constant and g is positive, decreasing, and

—
The results of Dafermos apply to the more general equation

Upy = W(ux,uxt)x+f, with Wq(p,q) > k > 0.




satisfies
(1.5) c - J g(s)ds > 0.
0

Condition (1.5) has a natural mechanistic interpretation:
In statics, i.e. e(x,t) = €(x) and o(x,t) = o(x) for all t,

(1.4) reduces to

(1.6) o(x) = (¢ - J g(s)ds)e(x).
0

Thus (1.5) states that the '"equilibrium stress modulus'" is
positive.
In general, the constitutive equation for a material with

memory takes the form
(1.7) o(x,t) = L(eT(x,)),

where for fixed x and t, et(x,-) is the function mapping [0,x)
to R defined by ef(x,s) = e(x,t-s), s > 0, and ¥ is a
real-valued functional (not necessarily linear) with domain in
an appropriate function space. The history of the strain up to
some initial time is assumed to be known.

The notion of fading memory can be interpreted
mathematically as a smoothness requirement for ¥. Following
Coleman and Noll [ 4,5 ], we introduce an influence function,
intended to characterize the rate at which memory fades, and
construct an Lp—type space of admissible strain historics,

using the influence function as a weight. For convenience, we




use history spaces of the Lz-type; our analysis can be adapted to
Lp-type spaces for any p with 1 < p < » ,

Let h be a positive, nonincreasing function belonging to
Ll(O,w), and denote by Vh the Banach space of all measurable

o2

functions w:[0,») > R such that | h(s)lw(s)|2ds < o,
0

equipped with the norm* given by
2 2 2
(1.8 July = w0 %+ [ hes)hus) [as.
0

We refer to h as an influence function and to the elements of
Vh as histories. The reader is directed to Coleman and Mizel
[3] for an axiomatic development of fading memory norms.

Formally, we say that a material has fading memory if
the stress is determined by a constitutive equation of the
form (1.7), and there exists an influence function h such that
Y is defined and continuously Fréchet differentiable on a
neighborhood & of the zero history in V,. This is essentially
equivalent to the principle of fading memory formulated by
Coleman and Noll [4,5 ].

The main focus of this investigation is on global existence
of smooth solutions to the equations of motion for materials
with fading memory. A typical problem of interest

. . . . . . +
is to determine a smooth function u which satisfies

.
Functions in V, are regarded as being equivalent if they are

equal at 0 and equal almost everywhere on (0,«).

t For s > 0, we set ui(x,s) = ux(x,t-s).




(1.9)  u, (x,1) = 5= Zui(x,")) + £(x,¢),

X €4, t >0,

together with appropriate boundary conditions if 4 1is bounded,

and
(1.10) u(x,t) = v(x,t), x€F , t <0,

where v is an assigned smooth function. In order to h vlobal
existence, ¥ must satisfy certain natural conditions.

Choose an influence function h and a neighborhood & of
zero in Vh such that ¥ is continuously differentiable on &.
It follows from the Riesz Representation Theorem that the

Fréchet derivative of ¥ admits representation

(1.11) @' (w;w) = E(w)w(0) - J K(w,s)w(s)ds
0

for some E:# » R and K:&x(0,») - 1R. We assume that K is
continuous on #@x(0,»). Physically natural assumptions on E
and K are that E(0) is positive and that k(0,-) is nonnegative,

nonincreasing, and satisfies
(1.12) E(0) - J K(0,s)ds > 0.
0

The interpretation of (1.12) is similar to that of (1.5). An
elastic material is a special case of a material with fading
memory, and consequently to have global existence, we must

impose an additional restriction to ensurc that the dependence




of stress on past values of the strain is dissipative. To this
end, we assume that K(0,-:) does not vanish identically. Roughly
speaking, the preceding conditions say that the linearization of
(1.7) about the zero history is the constitutive relation for a
physically reasonable linear viscoelastic material of the
Boltzmann type. For technical reasons, we later strengthen the
smootnness assumptions on E and K.

Coleman, Gurtin and Herrera [2], and Coleman and Gurtin []]
have studied wave propagation in materials with fading memory
under essentially the above hypotheses. Of particular
relevance to this work are the results of Coleman and Gurtin
concerning the decay of acceleration waves, i.e. continuously
differentiable solutions of (1.9) which sustain jump discontin-
uities in their second derivatives. The amplitude otf an
acceleration wave is defined to be the jump in acceleration.

It is shown in [1] that if the amplitude of an acceleration

wave is small initially, then it decays to zero monotonically.
On the other hand, the amplitude of an acceleration wave may
become infinite in finite time if the initial amplitude is
large. This damping out of small discontinuities indicates

the presence of a dissipative mechanism which is effective so
long as the motion remains ''small', and suggests that (1.9)
should have global smooth solutions provided the initial history
and forcing function are smooth and small.

Results of this type have becn obtained by several authors

for the model case




(1.13) o(x,t) = tb(z:t(x,())) - fln(s)w(et(x,s))ds
0

under appropriate conditions on ¢, ¥, and m. For ¢=¢ ,
existence theorems have been given by MacCamy [13}, Dafermos
and Nohel [ 7], and Staffans [15], and for ¢ different from ,
by Dafermos and Nohel [ 8].

We here establish global existence and uniqueness of
smooth solutions to a class of history value problems associated

with (1.9) under smoothness and smallness assumptions on the data.

In Chapter 2, we formulate a history value problem associated
with an abstract version of (1.9). The assumptions used to
analyze the abstract problem are motivated by mechanics. In
Chapter 3, we prove the existence of a unique local solution

defined on a maximal time interval. It is then shown, in

Chapter 4, that the local solution is actually global if the
initial history and forcing function are suitably small. In
Chapter 5, the aforementioned abstract results are applied to
the equations of motion for materials with fading memory.

The local existence argument is based on an application
of the contraction mapping principle in an appropriate metric
space. It does not rely on the history dependence being
dissipative, and consequently applies to a larger class of
materials. Global existence for small data is secured via a
chain of a priori "energy-type'" estimates. The presence of
dissipation plays a crucial role in the development of these

estimates. The basic strategy cmployed here of showing that




dissipation prevails and ensures global existence when the data
are small is due to Matsumura [13]. Finally, we remark that
the pattern of estimates developed here was inspired by the

paper of Dafermos and Nohel [8].
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Chapter 2. Abstract Formulation

In this chapter, we formulate an abstract analogue of the 1
history value problem (1.9),(1.10). We begin by discussing

some preliminary notions.

A. Preliminaries

Let % be a real Hilbert space with inner product (:,*) and
associated norm | -||, and let I be an interval of real numbers.
For m a nonnegative integer, we denote by Cm(I;EV) the set of
all functions mapping I to % which, together with their first
m derivatives (if m > 1), are bounded and continuous on the
interior of I and admit continuous extensions to the closure
of I. As usual, for 1 < p < =, Lp(I;jV) denotes the set of
all (equivalence classes of) strongly measurable functions

w:I % such that j lw(t)|Pdt is finite, and L™(I; %) is the
I
set of all strongly measurable, essentially bounded functions
mapping I to% . For m a nonnegative integer and 1 < p < =,
let Wm’p(I;jV) be the Banach space of all functions w:I +-%
(k)
such that w €LP(1;2) for each k=0,1,...m, equipped with the

norm defined by

m (k)
(L[ rwrren? e <o,
k=0 1
and
m (k)
ess-sup ) || w(t)] if p = o,
tel k=0
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[ (k)
' Here w denotes the kth derivative* of w with the convention
(0) (1) (2)

w = w. We often write w and w in place of w and w .

Let u be a function mapping some interval (-«,T] into % .

For each t € (-»,T] we define the function ut:[O,w) > % by
(2.1) ub(s) = u(t-s), s > 0.

If u:(->,T] % 1is sufficiently smooth, then for each t€(-«,T],

we define the functions ut,ut:[0,=) + % by

(2.2)  ub(s) = u(t-s), s >0,
and
(2.3) at(s) = u(t-s), s >0,
etc.

Certain of the estimates in Chapters 3 and 4 can be derived
by a formal computation, which, to be made rigorous, would
require smoothness properties beyond those possessed by the
functions involved. In these situations, we must first work
with a discrete analogue of the estimate and then take limits.
For this purpose we introduce the forward difference operator An
of stepsize n . If w:I » %, then for each n > 0, we define

b
Anw y

(2.4) (Anw)(t) = w(t+n)-w(t).

x
These derivatives are to be understood in the sense of vector-
valued distributions.
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We shall make frequent use of many standard Hilbert space
inequalities, particularly the Cauchy-Schwarz inequality and two

of its immediate consequences,

2 1 2
(2.5) ey < 5 I+ 52 Iyl VX,y €%, >0,
and the so-called Cauchy inequality

X.

2
N

e~13

(2.6) I

n 2
_<_m Z "xl” ’ xl’xza"'xme .?.
i 1=1

1

B. Basic Spaces

We now introduce certain spaces that will play a central
role in the formulation and analysis of the abstract history
value problem. Let Qrk, k=0,1,2,3, be real Hilbert spaces such
that 97k+1 is continuously and densely imbedded in £?k for
k=0,1,2. We denote the norms and inner products on 5zk by
"'"k and <-,-> , respectively, for k=0,1,2,3. By & ;, we
denote the dual of E?i constructed via the inner product on

174

i.e. gz;l is the completion of 520 under the norm defined

0° |
by
(2.7) Ixl_; = sup  <x,y>,. i
- 0 i
Iyl =1 |
Clearly, 520 is imbedded continuously and densely in & _;.

We assume that
(2.8) <x,y>, < lIxll Iyl V X,y €2z,

which implies that every continuous bilincar form on gzzxszé

admits continuous extension to E?iXE?s.

A e e am im e e e e afom e o4 a .-
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The only inner product which will be used explicitly in
the sequel is <7t In order to simplify the notation, we
drop the subscript and write <-,+> in place of <, The
symbol <-,-> will also be used to denote the duality pairing
between Z 4 and E?i.

We shall frequently be concerned with functions which
take values in this scale of spaces. If f maps an interval I
into 5%3, it can also be regarded in a natural way as a
mapping from I to E%k for k=-1,0,1,2. We use the same symbol
to denote each of these maps. Similar comments apply to linear

operators. To simplify our notation, we set*

Dw

(2.9) Y= L2245

k=1

equipped with the operator norm defined by

(2.10) Ll = sup Qixl, + sup  rx]
L xlger 0 af,e
+ su lLxl - .

Ixl, 1 .

In the applications, the spaces £?k will be subspaces of
the usual Sobolev spaces wk’z(ga).

Let h be a fixed real-valued influence function, i.e. a
nonincreasing real-valued function belonging to Ll(O,w) with

h(s) > 0 for all s > 0. Without loss of generality, we assume

w
As usual, £{T£2k;£2k-2) is the set of all bounded linear maps
from EZk to Zy._,-
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o

(2.11) I h(s)ds = 1.
0 {
For k=1,2,3, we denote by ‘@k the Hilbert space of all strongly

measurable functions w:[0,») = fzk such that

f h(s)"w(s)”ids is finite, equipped with the norm* given by
0

oo

(212) B} = IO} + [ ho)lwsl as.
0

Clearly, @k+1 is imbedded continuously and densely in 9%
for k=1,2. Moreover, (2.8) implies that continuous bilinear
forms on an 9& and on QEX£%é admit continuous extensions

V4
to “x %
likely to arise, we use the same symbol to denote a bilinear

and QEX-Q%, respectively. When no confusion is

form and its extension.

It follows from the Lebesgue Dominated Convergence Theorem
that if we CO((—w,T];ﬁ%k) for some k=1,2,3, then the map
t -+ wt is a continuous mapping of (-«,T] into 91. Also, if
wECl((-w,T];Q’k) then the map t -~ wt is continuously

differentiable from (-~,T] into Qi and

(2.13) F &%) = wt, w<t<T.

If w€IC0((-w,T];£?k) for some T > 0 and some k=1,2,3, one easily

deduces that for each t€[0,T]

*
We regard functions in 9& as being equivalent if they are

equal at 0 and equal a.e. on (0,»). This norm is associated
in an obvious way with an inner product.
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(2.14) wHIE < 2 sup [w(s)|[Z + W2,
UG < 2 sup ol + I

This inequality will prove useful in analyzing the history value

problem which we are about to describe.

C. The History Value Problem

Let A be a smooth map from 9& to & and B be a smooth map
from @EX[O,w) to &¥. We seek a function u mapping (-«,*) to

the spaces Qlk which satisfies
v t t t
(2.15) w(t)+AuBu(t) + f B(ut,s)ut(s)ds = £(t), t > 0,
0

and
(2.16) u(t) = v(t), -0 <t < 0.

Here f is a given function mapping [0,») to the spaces Qﬁ(,
and v is an assigned function on (-»,0] with vo € @E.

In the next section, we collect together all of the
assumptions which we shall impose on A and B. However, before
these assumptions are stated, the following remarks are in
order.

It is not our intention here to develop a general theory
for functional differential cquations in Hilbert space; (2.15)
should be regarded as an abstract version of (1.9). By studying
(2.15) rather than analyzing (1.9) directly, we can develop an
existence theorem for (2.15),(2.16) which will be applicable to
a large class of problems associated with (1.9) and avoid the

repetition of standard arguments. Also, a proof in the abstract
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framework offers certain notational conveniences, and, hopefully,
is more illuminating.

We have tried to state our assumptions in such a way that
they will be convenient for the proofs in Chapters 3 and 4 and
will follow from a minimal set of assumptions 'in the applica-
tions; we have not tried to state a minimal set of assumptionhs
on A and B. (See Remarks 2.1 and 2.2.). Although (a-1) through
(a-11) may appear somewhat complicated, they will be satisfied
in the applications under a rather simple set of conditions on
¥ , all of which are quite reasonable from the point of view
of mechanics. Finally, we remark that even though we are
imposing certain global conditions on A and B, our results are
applicable to situations in mechanics where ¢ 1is defined only

on a neighborhood of zero in Vh. (See Theorem 5.1 et. seq.)

D. Basic Assumptions

Let the spaces £2k, <, and 9& be as described in Section B.

We assume that:

(a-1): The map A: @} +% 1is twice continuously Fréchet

differentiable* and there is a constant Al such that
(2.17) HA(w)m{,i A V W E @E,
(2.18) A" (i)l < A IlIz, v W,z € 9,

(2.19) A"z 20l < A 2, izl v waz .z, € 9.

n
We use the notation A'(w;z) to denote the Fréchet derivative
of A at w acting on z.




(2.21)

(a-4):

(2.22)

(2.23)

(a-5):

(2.28)

(2.25)

(2.26)

(2.27)

17

There is a positive constant A, such that

1
<AWx,x> > A | x]2 vwe %, x€Z,.

For each fixed w € 9&, the linear operator A(w) is
3
1

invertible with (A(w)) ~ € n $f(£Zk_2;£?k) and there
k=2

is a constant My such that

I e < ulixly ., k=2,3, vow € %, x €2.

We define

a(w;xl,xz) = <A(w)x1,x2>-<A(w)x2,x1>

and assume that there is a constant “2 such that
latwsxy,xp) | < “2”*1”0'”*2”1'(1+|HWIH§)

VWEQ/:,), xl,xze_Q’l.
(('W,T];Qk), T > 0,

3
For each w € n W
k=0

3-k,

ZOE_Q’ , zle QZ’ and g:[0,T] ~» Q’O with

gec®(10,1); 20 ¢t ([0,T]:2,),
geL?([0,T]:2,),

the linear initial value problem
Z(t)+AWSIZ(t) = g(t), 0 <t <T,

2(0) = Z,, Z(0) = I,
5 3.k
has a unique solution Z € n C ([O,T];é?k).

k=0
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(a-6): The map B: @EX[O,m)-+5f is (jointly) twice
continuously Fréchet differentiable* and there is a

constant Az such that

(2.28) J HB(w,s)&; h(s) 'ds < A, V¥ we9,
0
(2.29) IBw,s)|Z n(s) Lds < A VweE 9,
- ’ g — 2 2’
0
o 2 -1 2
(2.30) J | B (w,z,s)&zh(s) ds < AZIHZIHZ Vw,z2E€%,,
0
- 2 -1 2 o
(2.31) I B (w,z,s)&{h(s) ds < Mlllzlll; v w,z € 7,
0
2.32 BY (w3 12n¢s) " Yas < A, |llzg M2 Mz, N2
(2. ) ” (w’zl’ZZ’s)g (5) s < 2 ”21 2 212
0
vV W,zy,2, € 9&.
We define

(2.33)  c(0,5) = | BO,E)aE, s >0,
and S

(2.34) F(0) = A(0)-C(0,0),

and assume that

(a-7): l leco. )2 hes) as < = .

Here B'(-;-,s) denotes the Fréchet derivative of B(.,s) for
fixed s, and B(w,s) is the derivative of B(w,s) with respect
to s for fixed w. We use B' to denote the "mixed" derivative.




i

-

e

(a-8):
(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(a-9):
(2.40)
(2.41)

(2.42)

(a-10):

(2.43)

(2.44)
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There is a positive constant A, such that
<F(0)x,x> > Afx] VxEZ,
2

<C(0,0)x,x> > Alxl; v x € Z,
<C(0,0)x,F(0)x> > Allxl5 v x €2,,
Ico,0xly > Alixl, vxe 2,
}IF(O)xII0 > Az”x”z vV X € é%é.
C(0,0) and F(0) satisfy
<C(0,0)x,y> = <C(0,0)y,x> vV X,y €Z,,
<F(0)x,y> = <F(0)y,x> vV x,y €Z,,
<€C(0,0)x,F(0)y> = <C(0,0)y,F(0)x> v X,y G-QZ'
There is a positive constant B such that
T t
f H[<C(0,t-£)w(£)deng dt
0 0

T t

< 8 [ <co,0w), [ co,t-ew(@rdes at,

0 0
T t
J Ilf B(0,t-E)w(E)]| fdt
0 0

T t

<8 | <co,omw), [ co,e-0ueas at

0 0

for every w€CO([0,T];Q2) and every T > 0.
o N |
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(a-11): There is a constant Mg such that for every
W €C0([O,T];QZI) and every T > 0, the linear integral

equation
t
(2.45) A(O)w(t) + j B(0,t-&)w(&)dg = g(t)
0

has a unique solution wEZCO([O,T];E%s) which satisfies

(2.46) sup flw(t)l; < vy sup gt
te[0,T] tef[0,T]
T T

@41y [ weld ee < ug [ lecond.
0 0

Remark 2.1: Existence of solutions to the linear initial value
problem (2.26),(2.27) can be proven in the abstract setting.
However, the proof is rather lengthy and in the applications
standard existence theory for linear hyperbolic equations will

imply that (a-5) is satisfied.

Remark 2.2: Existence of solutions to the linear integral
equation (2.45) can also be established in the abstract setting.
However, in the applications one simple condition will guarantee

that both (a-10) and (a-11) are satisfied.
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Chapter 3. Local Existence

The objective of this chapter is to establish the
existence of a unique local solution to the history value
problem (2.15), (2.16). We assume throughout that the basic
assumptions (a-1) through (a-¢ ) hold. In addition, we assume

- that f satisfies
0 . 1 .
(3.1) £€C”([0,2)525) N C ([0,=)5a,),
- 2
(3.2) £eL5([0,%) 32,
and that v satisfies

(3.3)  ve n (=005,

h DWW

k=0

and the compatibility conditions

(3.4) veo) = -Avyv(o) - J B(v?,s)v0(s)ds + £(0),
0
3 : :
(3.5) (v)(O) = AvOvo) - arv%v0vo
- f B(vO,S)GO(s)ds
0
- J B'(VO;QO,S)VO(s)ds
0

+ £(0).

The purpose of (3.4),(3.5) is to ensure that the solution
will be smooth across t=0. An existence theory for (2.15),

(2.16) can be developed without assuming (3.4),(3.5), however,
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i will generallybe discontinuous at zero.

Theorem 3.1: Assume that the basic assumptions (a-1) through

(a-6 ) hold, that f satisfies {(3.1) and (3.2), and that v
satisfies (3.3),(3.4), and (3.5). Then, the history value
problem (2.15),(2.16) has a unique local solution u defined on
a maximal interval (-m,Tmax), T > 0, such that for each

max
T < Tmax,.the restriction of u to (-«,T] satisfies

> 3ok
(3.6) u€ N CTTN((-=,T], 2y
k=0
Moreover, if T < o,  then
max
(3.7) ARNOIE t 4T
.7 sup u (s ., > = as .
s€[0,t] k=0 3-k max

The proof of this theorem is rather lengthy and will be
partitioned into several lemmas. We begin by constructing a
metric space which will play a central role in the remainder of
the chapter.

For M,T > 0, let £(M,T) denote the set of all functions

w:(-o,T] =~ gzo which satisfy

5 3,
(3.8) we no W (-2, T Z),
k=0

(3.9) w(t) = v(t), t <0,
and

3 (k) , 2
(3.10) ess-sup ) | w ()3, < M.

te[0,T] k=0 :

e




aaRA )
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Observe that Z(M,T) is nonempty if M is sufficiently large.
Henceforth, we tacitly make this assumption.

Define a metric p on Z(M,T) by

(3.11) ( ) % H(k)( ) (k)( Ik
. W, ,W = su w,(t)- wy(t .
A tE[g,T] k=0 1 2 2-k

Lemma 3.1: Equipped with metric o, gHM,T) becomes a complete
metric space.
Proof: That p defines a metric on Z(M,T) is obvious. Suppose

that {wj};:l is a Cauchy sequence in (?(M,T),p). It then

follows easily that there is a function w belonging to

2
n wz'k’w((-w,T;;éik), with w(t) = v(t) for t < 0, such that
k=0 -

Wi o> W (strongly) in wek,e

((—m,T];gzk) for each k=0,1,2. On
account of (3.10), there exists a subsequence {wjg} and a

function x belonging to

3

n W3 ®((-=, 1152 ), with x(t) = v(t) for t < 0, such that
k=0 -
wjl-a»x weak * in Ws-k’w((-w,T];éik) for k=0,1,2,3. From the

sequential weak * lower semicontinuity property of norms, we

deduce that

3 (K o 2
(3.12) ess-sup ) | x(t)”3-k < MY,
t€[0,T] k=0
whence x€ ?(M,T). By uniqueness of limits, we have w = x, and
consequently we€ ?(M,T). (Indeed, weak * convergence in

w3’”((-m,r];£z0) and strong convergence in Wz’m((-w,T];éfn)

both imply weak * convergence in Wz’m((-w,T];gzo), for example.)
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Therefore, wj - w in the space (Q(M,T),p), which proves the

lemma. W

Now, for w in gﬁM,T), consider the initial value problem
(3.13) Z(t)+A(wE)zZ(t) + J B(wt,s)wt(s)ds
0

= f(t), 0 <t<T,

(3.14) Z(0) = v(0), Z(0) = v(0).

=]

f(t) - J B(wt,s)wt(s)ds, 0 <t <T, then

If we set g(t)

0
(2.24) and (2.25) are satisfied and hence (3.13),(3.14) has a
5 3.k
unique solution Z € n C ([O,T];ka), by (a-5). Let S
k=0

be the map which carries w into the function defined on (-=,T]
by
v(t), t <0

(3.15) (Sw)(t) = ,
Z(t), 0<t<T

where Z is the solution of (3.13),(3.14).
Our goal is to show that S has a unique fixed point in

j?(M,T), for appropriately chosen M and T, which will obviously

be a solution to the history value problem (2.15),(2.16). The
existence of such a fixed point will be established by the
contraction mapping principle. For the convenience of the
reader, we record below certain inequalities which will be used,
without explicit reference, in the subsequent estimates.

If w belongs to Z(M,T), then

il P
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(k)

tin2 2 012
(3.16) ess-supll|w “|||Z . < 2M° +]|| v Y|
t€[0,T] 5-k | 13-k

for each k=0,1,2,3,

(k) .2 xy 2 2,2
(2.17) w5 <2l v(o) [[5. + 2t°M, 0 <t <T,
for each k=0,1,2, and

(k)¢ 2 (k) 2 2.2, 0,2
(3.18) |l w 5. < allviolls + aetME v NI, 0 <t <

for each k=0,1,2.

Lemma 3.2: For M sufficiently large and T sufficiently small,
S maps Z(M,T) into Z(M,T).

Proof: Take w in £(M,T) and let u = Sw. In view of the
compatibility condition (3.4), u has the requisite smoothness
across t=0, and by the definition of S, u(t) = v(t) for t < 0.

It remains to show that if M is large and T is small, we have

3 (k) 2 2
(3.19) ess-sup ] | u(t)lfz_, < M,
te[0,T] k=0

independently of our choice of w.

To simplify the notation, we set
(3.20) b(t) = j B(w®,s)wt(s)ds.
0

Then, u satisfies

(3.21)  U(t) + AwSHu(t) = f(t)-b(t), 0 <t <T,

T,
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(k) (k)
(3.22) u(0) = v(0), k=0,1,2,3.

Differentiation of (3.21) with respect to t yields

(3) . . . t ‘t
(3.23) u(t) + A(w)u(t) = f(t)-b(t) -~ A'(w ;w)u(t),

0 <t <T.

We apply the forward difference operator An of stepsize n to
both sides of (3.23), take the inner product of the resulting
expression with (Anﬂ)(t), and integrate from 0 to T . After
certain integrations by parts, we divide by n2 and let n tend
to zero. The result of this tedious, yet straightforward

computation 1is

(3) .
(3.24)  zlulollg + 3 <AmHED), 80>

(3)

4 IO

1 <«awhv(0),v(0)>

v 3| <A hwHEe),ue)> de

(3)

tou(e),u(t))de

a(w

ey . (3)
<A'(wt;wt)u(t), u(t)> dt

+
B} =
OV O~ QY1

T
(3)

- J <A'(wt;Wt)u(t), u(t)> dt

0

T S T T S S N T S . |
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g
v .
- I t.'t "t (3)
- J <A"(w 3w ,wu(t), u(t)> dt
0
o (3)
. f <F(t), u(t)> dt
0
(3
- j <b(t), u(t)> dt, 0 <1< T,
0
From (3.24), we deduce that
(3) .
. (3.25) || u(Dllg * Aoy
3) 0 .
< AIv@flg + <A(v7)v(0),v(0)>
T T
- . 2 . 2
] + [ IEagee « [ Ibcog
0 0
300 (K
+ P(M) ] lute)llz_, dt, 0 <7t <T,
L 3-k - -
k=0 0
where P:[0,~) - [0,») is a locally bounded function which can be
chosen independently of w and T, and A is a positive (coercivity)
v
constant which is independent of w, M, and T.
Applying (A(w$)) ! to both sides of (3.21) and (3.23), we
get
9

1

(3.26)  u(t) = (AWS) L[E(t)-b(t)-u(t)], 0 <t <T

and
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i e 1. . (3) ¢ vt
(3.27) u(t) = (A(w7)) "[f(t)-b(t)- u(t)-A'(w ;w)u(t)],
0<t<T,
from which it follows that
(3.28)  Ju®lZ < wde@ll? « v« Juoldh,
0 <t<T,
and
’0 " 2 ' 2 ' 2 (3) 2
(3.29) lu(ll; < wdl £y + o)y + I u(e)lly

e edu)d, o<t

for some positive constant p which can be chosen independently
of w, M, and T.

Now, set

30K
(3.30)  V(w,M,T) = sup ] I u(t)ll3 >
te[0,T] k=0

and observe that V can be dominated by a linear combination of
the suprema of the left hand sides of (3.25),(3.28), and (3.29).
We want to show that if M is sufficiently large and T is
sufficiently small, then V(w,M,T) < MZ, independently of our
original choice of w.

In order to secure such a bound for V, we need to estimate
the terms involving b which appear on the right hand sides of

(3.25),(3.28), and (3.29). Making use of the identities




P .

(3.31) b(t) =

(3.32) b(t)

and

(3.33) b(t) =

we deduce that

29

t
f B(wt,t-£)w(£)dE
0

0
+ j B(wS,t-£)v(E)dE,

t
f B(wh,t-£)w(E)dE
0

towt,t-e)w(e)de

R' (w

B(wS,t-£)v(E)dE

B' (whiwt, t-£)v(E)dE,

B(wE,0)w(t) + f B(wt,s)wt(s)ds
0
. 2 f B (whiwt,s)wt(s)ds
0
B'(wt;ﬁt,s)wt(s)ds
‘t

B”(wt;w ,Qt,s)wt(s)ds,

—
—
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(3.34)  lbol? <a+ oy, o<t <,
(3.35) b))l < n+ tfQon,  o0c<t«<rT,
and
(3.36)  [b(olli <oy, 0<t<T,

where Q:[0,») » [0,~) is a locally bounded function which can be
chosen independently of w and T, and A is a positive constant
which is independent of w, M, and T.

Combining (3.25),(3.28),(3.29),(3.34),(3.35), and (3.36)
in a straightforward fashion, we arrive at an estimate of the

form
(3.37) V(w,M,T) < a + (T+T2)R(M) + (T+T2)R(M)V(w,M,T),

where R:[0,») - [0,») is a locally bounded function which can be
chosen independently of w and T, and a is a positive constant
which is independent of w, M, and T. (Of course, a and R

depend on certain properties of f and v.) If we fix Mg large
enough so that MS > 3a and then select T, small enough so that

(T0+TS)R(M0) < a, we deduce from (3.37) that

2
(3.38) V(w,My,To) < Mo,

and the proof is complete. B
Fix M > 0 and T > 0 such that S maps Z(M,T) into Z(M,T)

for every T which satisfies 0 < T < T.
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H«
% Lemma 3.3: For T sufficiently small, the map
S: Z(M,T) + @(M,T) is a strict contraction with respect to
{
{ the metric o
i" Proof: Take w,,W, in Z (M, T) where 0 < T < T, and set
u, = Swl, u, = Swz, U = u;-u,, W= WiTW,. Then, U satisfies
e t N - t t
e (3.39)  U(t) + A(wU(t) = [A(w;)-A(w;)]u, ()
[ t
+ | [B(wp,5)-B(w],s)Jw(s)ds
0
L‘ o
{ t t
i - J B(wz,s)W (s)ds, 0 <t<T,
i 0
(3.40) u(t) = 0, t < 0.

Differentiating (3.39) with respect to t and rearranging certain
terms, we get

(3) t *
(3.41) U(t) + A(wy)U(t)

= [AWH-AGDI Tuy (1) - AT (wwhuCe)

A (wz WO, (t)

+

(A" (wswh) -A" (whwh) Ju, (0)

[B(wg,s)-s(wf,s)]éf(s)ds

B(wg,s)wt(s)ds

t.
29

B'(w Qg,s)wt(s)ds

)
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B'(ws;wt,s)wf(s)ds

+

[B' (w5iw],s)-B" (wp;w],s) Wy (s)ds

o— 88 OoO+— 8

0 <t <T.

We take the inner product of both sides of (3.41) with ﬁ(t)
and integrate from 0 to t . After certain integrations by parts,

we arrive at

(3.42) L [U(0OIZ + § <AamDHUD),0(0)>

T
= % J <A'(w§;&§)ﬁ(t),ﬁ(t)> dt
0

Nl

T

f a(w;;ﬂ(t),ﬁ(t))dt

0

<TAME)-A ) Tu, (1), U(t)> dt
<A'(w§;Q§)U(t),ﬂ(t)> dt
<A'(w§;Wt)u2(t),ﬂ(t)> dt

LAt s wEy At i) Ju, (0),Ue)> dt

1
QDY O Ol OV OY——— A

<J [B(wE,s)-B(wi,s)]Q%(s)ds,ﬁ(t)> dt
0
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B(ws,s)WE(s)ds,u(t)> dt

Siwl,swt(s)ds,u(t)> dt

1
O A O O~—— A
A

<f B (wy W, s)wl(s)ds,U(t)> dt
0

T (o]
+ J <J [B' (w33wl,s)-B' (wiswl,s)]w] (s)ds,U(t)> dt,
0 0
0<t<T.

Since W(t) = 0 for t < 0, it follows that

(5.45)  [WH5 < 2z sup_[Iw()[l5, 0<t=<T,

t , T
and
(3.44) W3 < 2 sup (W (RIS, 0<t<T

,T]
Thus from (3.42), we deduce that
; . 2 (X

(3.45)  NUCEOIG « MU < vl ][ UOl7 e

0

vt osup  (IWCOl5 + WD), 0 <t < T,
€[0,T]

b
where A and p are positive constants which can be chosen
independently of Wis Wos and T.
Applying (A(w%))"!

of the fact that Wt(s) = 0 for s > t, we get

to both sides of (3.39) and making use
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(3.46)  UCt) = (AGW]) HIAWS) -A( ) Tu, (1)
Sve t
- U(t) - f B(wy,s)W' (s)ds
0
[ et s)as),
0
0 <t <T.
It follows from (3.46) and the inequality
T .
(.47 WA < 2] IRl ae)?, 0<t<T,
0
that
2 - 2 2 2 . 2
(3.48)  Juoll; < yUvly « 10 sup dwedl; + Iwee)l 1,
2 £€[0,T]

0 <t <T,

where y is a1 positive constant which is independent of WysWos
and T.

Combining (3.45) and (3.48), we obtain an estimate of the

form
2k,
(3.49) sup Lo uells o,
t€[0,T] k=0
2 (k)
<a(meT) U sup T U5,
t€[0,T] k=0
2 (k)
¢ osup T wiols b,

te[0,T] k=0

where a is a positive constant which can be chosen independently

of WisWoo and T. (Of course, o depends on v and M.) 1If we
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select T small enough so that 3aT(T+T2) < 1, then (3.49) yields
(3.50) (sW,,sW.) < & (wy,w,)
: PLSW »SWo) 2 7 oiW»¥;

VoW, ,w, € Z2(M,T),

which completes the proof. W

Remark 3.1: The proofs of Lemmas 3.1, 3.2, and 3.3 remain
valid if we drop the compatibility assumption (3.5) and replace
(3.3) with the weaker condition

(k)

T (m 015 2,), V) €2,

W
0

(3.51) vV €

2w

k
k=0,1,2.

Proof of Theorem 3.1: From Lemmas 3.1, 3.2, 3.3, and the

contraction mapping principle, we deduce that S has a unique
fixed point in gﬁM,T) for sufficiently large M and sufficiently

small T > 0, which is the unique solution of (2.15),(2.1¢) in

3
n w3 k, ((-=,T]; ka). Let (-»,t) be the maximal interval on
k=0

which a solution u of (2.15),(2.16) exists and satisfies

3

u€ n Ws_k’m((-m,T]; Z ) for every T < T.
k=0 3 X
Suppose that t < » and that ess-sup ) || u(s)“%_k remains

s€f0,t] k=0
bounded as t -~ t. Then, we can extend u to be defined on

(-»,t] such that the extended function satisfies




Laar s e cun o

v

s aae s o o

36

3-k, (kJ

(3.52) u € W m((-m,f];gzk), u(®) €Z;

I Dw

, k=0,1,2,
0 -k

and

(3.53) u(t) = -A(uf)u(f) - J B(uf,s)uf(s)ds + £(1).
0

Making an obvious translation of variables, we can now use
Lemmas 3.1, 3.2, 3.3, and the contraction mapping principle
again to extend u so that it is a solution on some interval
(-=,t*] with t* > t, which contradicts the assumption that
(-»,t) is maximal. Thus, if t < « , then

3 (k) 2 _
ess-sup ) | u(s)HS_k +~ ® as t ¢+ T.
se€[0,t] k=0

Finally, because of (3.3), (3.5), and that fact that u is

a solution of the initial value problem (3.13), (3.14) (with

w=u) on [0,T] for each T < t, we actually have that

3

ue€Ee n Cs_k

((-w,T];E?k) for each T < t. The proof of Theorem

3.1 is complete. B

Remark 3.2: If we drop assumption (3.5), Theorem 3.1 remains
(3)
valid with the exception that wu may be discontinuous at t=0,

i.e. the history value problem (2.15),(2.16) has a unique local

), T >0

solution u defined on a maximal interval (-e,T
max max ?

such that for each T with 0 < T < Tm
3

ax’ the restriction of u to

(-~,T] satisfies u € n Cs'k((-w,T]; k) and the restriction
k=1 3
of u to [0,T] satisfies wue n 2 5([0,11;2,), and if

k=0

Tmax < o, then (3.7) holds.




Chapter 4. Global Existence

In this chapter we show that the history value problem
(2.15),(2.16) has a unique global solution, provided that f
and v are suitably small. We assume throughout that the basic
assumptions (a-1) through (a-11) hold. We also assume that f

satisfies

(4.1)  fectio,=);z)n L4([0,=);2,),
.2y fectio,=) ;@ n LP(10,=);:2),
(4.3)  Fel’(10,=):2),

and that v satisfies

3
(4.4, veE N

) AR ((-=,01:2),

0

and the compatibility conditions

(4.5) ¥(0) = -Av?)v(0) - J B(v?,s)v0(s)ds + £(0),
0
(3) . )
(4.6) vi0) = -AcvOv(o) - A'ov?ivDveo

B(vo,s)Qo(s)ds

B (v?;v®, s)v0(s)ds

Fhes OV——— 8 O 8

+

(0).

The sole purpose of (4.5),(4.6) is to ensure that the solution

will be smooth across t=0. (See Remark 4.3.)

P S . P S TP U e
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As discussed in the Introduction a global solution should
be expected only when f and v are suitably small. To measure

the sizesof f and v, we define

(4.7 FW) = sup e} + HE@INE)

. T dec)? + 1£colly + I1ElHat,
and :
(4.8) 7(v) = illl o -

Our main result is:

Theorem 4.1: Assume that the basic assumptions (a-1) through

(a-11) hold and that the influence function h satisfies
(4.9) h(t+s) < ch(t)h(s), Vv t,s > 0,

for some positive constant c¢. Then, there is a positive
constant § such that for each f and v which satisfy (4.1)

through (4.6) with
(4.10) F(f) + Z(v) <8,

the history value problem (2.15),(2.16) has a unique solution

3
u€ n cs'k((-w,w);é?k) and
k=0
(k) _
(4.11) u(t) > 0 in @5 4 4, as t > =,

for k=0,1,2. Moreover there is a positive constant T such that
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3 (k)
(4.12) kZO Fu)lz;, s T{F(H+2 v)} vt >0.

Remark 4.1: Clearly, exponential influence functions of the

form h(s) = Me'ds, M>0, d> 0 satisfy (4.9). However,
influence functions of the form h(s) = M(1+s)'d, M>0,d>1,

do not satisfy (4.9).

Remark 4.2: Theorem 4.1 remains valid if we drop the assumption

(4.9) and replace (4.10) with the stronger condition

z (XY
[ h(ees)] v 7(s)ll 5y dsde < 6.

(4.13) F(£) + 2(v) +
0

k

Q- 8
O— 8

The proof requires only trivial modifications.

Remark 4.3: I1f we drop the compatibility assumption (4.6),
(3)

Theorem 4.1 remains valid with the exception that u may be

discontinuous at t=0, i.e. if F(f) + ¢ (v) < 6, then (2.15),

(2.16) has a unique solution u € n Cs-k((-w,w); gqg such
k=1
that the restriction of u to [0,») satisfies
3
ue n K(0,@); Z,), and (4.11) and (4.12) hold.
k=0
Remark 4.4: It is interesting to observe that the symmetry

condition (a-4) on A is not used to derive any of the global
estimates in the proof of Theorem 4.1. It is, however, needed
as an assumption in Theorem 4.1 because it is used in the local

existence proof.
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Proof of Theorem 4.1: Clearly the assumptions of Theorem 3.1

are satisfied, so let u be the solution of (2,15),(2.16) on a

maximal interval (-w,Tm ). For 'rE[O,Tmax), set

ax
3 (k) 2
(4.14) F(u(t)) = sup I uols
tef{0,1] k=0
ST,
o 1 ([ I utel?, -

Our goal is to show that if (4.9) is satisfied with 3§

sufficiently small, then

(4.15) F(u(t)) < { F(£) + ()1, 0 <1< T ,

max

for some positive constant k which can be chosen independently
of 6§, f, and v. This will obviously imply Tmax = o by
Theorem 3.1 and yield the estimate (4.12). Also, (4.15) will

imply that the restriction of u to [0,») satisfies

3

3 -k, 2
4.16)  uwe n w02,
k=

from which (4.11) follows immediately.
To establish (4.15), we develop a chain of energy estimates.

We begin by rewriting (2.15) in the equivalent form

(4.17) u(t) + F(0)u(t) + J C(0,s)ut(s)ds
0
= £(t) + [A(0)-A(uD)]u(t)

+ J [R(O,S)-B(ut,s)]ut(s)ds,
0
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which in turn is equivalent to
t o
(4.18)  u(t) + F(O)u(t) + f C(0,t-£)u(E)dE
0

= £(t) + [A0)-AQY)Iu(t)

+ J [B(O,s)-B(ut,s)]ut(s)ds
0

0
- f C(0,t-E)v(E)dE.

We take the inner product of C(0,0)ﬁ(t) with both sides of

(4.18) and integrate from 0 to T, thus obtaining

(4.19) 3 <C(0,0)u(t),u(t)>

<C(0,0)u(t),F(0)u(r)>

t
<C(0,0)u(t), J C(0,t-£)u(e)de> dt
0

+
e S L

- % <C(0,0)v(0),v(0)>

1
)

+

<C(0,0)v(0), F(0)v(0)>

<C(0,0)u(t),f(t)> dt

<C(0,0)u(t), [A(0)-A(uH)Tu(t)> dt

+
O O—— O

<C(0,0)u(t), J [B(0,s)-B(ut,s)Jut(s)ds> dt
0

e i Memse e o oo om
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T 0
- J <C(o,0)&(t), f C(o,t-E)Q(E)d€> dt,
0 - 00

Next, we apply the forward difference operator An of

stepsize n to both sides of (4.17). After making use of the

identity

© t
(4200 [ co,rwte) = [ ceo,e-erim u o
J 0

0
. f C(0,t-£) (4, V) (£)4E,

we take the inner product of the resulting expression with

C(0,0)(Anﬁ)(t) and integrate from 0 to Tt . After numerous

integrations by parts, we divide by nz and let n tend to zero.

The outcome of this computation is

(4.21) 1 <c(o,0)ii(n),u(0)> + F <C(0,2)u(r),F(0)u(r)>

T t
+ 1im lz f <C(0,0)(And)(t), IC(O,t-g)(Anu)(g)dg> dt
n¥0 n” g 0

e

1 <c(0,0)v(0),v(0)> + 1 <C(0,0)v(0),F(0)v(0)>

+ <C(0,0)u(1),£(1)> - <C(0,0)v(0),£(0)>

<C(0,0)u(t),f(t)> dt

]
BN O

<C(0,0)u(t), [A(0)-A(u®) Ju(r)>
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L <c0,0v(0), A" -A(0) TV (0)>

N

T

f <C(0,0)u(t),A' (ut;ut)uce)> dt

0

[B(0,s)-B(ut,s) ul(s)ds>

<C(0,0)u(t),

<C(0,0)v(0), | [BvY,s)-B(0,s)]v0(s)ds>

OV 8 O 8

<C(0,0)ﬁ(t), J B'(ut;ﬁt,s)ﬁt(s)ds> dt
0

<C(0,0)u(t), [B(ut,0)-B(0,0)Ju(t)> dt

Ot O A O/

<(0,0(t), | [Bu*,5)-B(0,5)1ut(s)ds> dt
0

<c(0,0)u(t),A' (W uTyu(n)>

<C(0,0)v(0),A" (v0;v0yv(0)>

<C (0,0)u(t),A' (ubut)u(t)> dt
<C(0,0)u(t),A' (ub;ut)ucet)> dt

<€ (0,0)u(t),A"(ut;ut,ubyu(t)> dt

e O OV

<C(0,0)u(t), f B (uT;uT,s)ul(s)ds>
0




N

+

A ARl St uhan. 2

44

<C(0,0)v(0), J B (v0;v?, s)v0 (s)ds>
0

<C(0,0)u(t), | B'(ut;ut,s)ut(s)ds> dt

OV——— 8

<C(0,0)u(t), | B ub;ut,s)ut(s)ds> dt

O 8§

<C(0,0)u(t), | B"(ut;ut,ut,s)ub(s)ds> dt

o4 OV O
o8

<C(0,0)u(t),C(0,TIv(0)> + <C(0,0)v(0),C(0,0)v(0)>
T
J<c(o,oj&(t),s(o,t)&(0)> dt
0
0

<€(0,00u(t), [ B(O,T-E)V(E)ds>

- 00

0
<C (0,0)v(0), J B(0,-£)V(E)ds>

T 0
j <€ (0,0)u(t), f B(0,t-£)v(£)ds> dt,
0 -0

It is not a priori evident that

T

t

tin L [<0,0008 0 (1), [ C0,t-5) a0y ()de> dt exists.

n+0 n

0

However, the limit of each of the other terms involved in the

derivation of (4.21) exists, so consequently the limit in
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question also exists (and is finite) for each rE[O,Tma ).

X
Moreover, from (2.43), we conclude that

T t
(4.22) lim lz f <C(0,0) (A u) (L), fc(o,t-a)(A u) (£)de > dt
ny0 n 0 . n 0 n

> 0,

Differentiation of (2.15) with respect to t yields

(3) . )
(4.23) u(t) + ABHu(t) + AT Subuce)

+ J B(ut,s)ﬁt(s)ds + [ B'(ut;ﬁt,s)ut(s)ds
0 0

= £(1),
which can be rewritten as
(3) t.’ t.'t
(4.24) u(t) + A(u)u(t) + A(u;u’)u(t)
t . 0 .
B RICREIMGLEE S IELRS ML
0 -0

+ J B'(ut;ﬁt,s)ut(s)ds = %(f).
0

From (4.24), we easily deduce

(3)
4.25) [ u(e)f}

t
sl ACu®yuce)l s - 6"[ B(u®,t-£)u(e)de]
0
6l A" (u®suSyu(e)] g + 6l [ B(u',t-£)v(£)dE] ]

- 00

I A

+

of [ B tsut)ut(s1asl + slE(0)I S,
0
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we rewrite (2.15) in the form
t

ACO)u(t) + j B(0,t-£)u(E)dE = £(t)-u(t)

0

+ [A(0)-A(uE)Tu(t)

[>»]

+ J [B(0,s)-B(ut,s)Jut(s)ds

0

0
f B(0,t-g)v(§)dE.

Then, by using (a-11), we arrive at

where y is a

4 Observe

4.27)  sup Juoli - w oswp Juce))?
t€[ T] ’ ]
2 t 2
< w osup JEN] + w sup [[[AC0)-ACu7)]u(e)];
te[0,1] 0,1]
T t t 2
+u sup Hf [B(0,s)-B(u ,s)Ju (s)ds|]
t€[0, 1] 0
0
+ U sup | J B(O,t-E)v(&)dgHz, 0 <1 <T ,
t€[0, 1] . 1 - max

positive constant which is independent of f and v.

now that by combining (4.19),(4.21),(4.25) and

(4.27), we can dominate

a.
’ f ] N F
sup u(t)
te[0,1] k=0 3k
T . t .
. + f <C(0,0)u(t), J C(0,t-g)u(g)de> dt
p O 0
T . t .
+ lim 17 j <C(0,0)(Anu)(t), JC(O,t-E)(AHU)(E)dE> dt
n+0 n 0 0

————— et A e A a ama
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by a linear combination of the suprema over [0,T] of the right
hand sides of (4.19),(4.21),(4.25), and (4.27). The last two
terms in the above expression (which are positive by (a-10))
represent the '"dissipative contribution' of the memory and will
play the crucial role in securing global existence. We want to
take advantage of these terms by using them to derive estimates
T

for kio f ”(ﬁ%t)ug_k dt.

U0

To this end, we apply the Cauchy inequality to the identity

(4.28) €(0,0) (A u)(t) = C(0,t) (8 u)(0)

t t
+ [eo o @ - [ Bo,t-0 0w ©s,
0

and integrate from 0 to t. We then use (@-10), divide by nz

and let n tend to zero to obtain

T
(4.29) [ llc (o, 0)u(e)) % at
0

T t
38 [ <c(0,00u(t), J C0,t-£)u(E)dE> dt
0 0

T t
56 1in Ly [ <co,0 @), [er0,e-8) (0,0 (0)ae> at
nv0 n” o 0

I A

3 f HC(O,t)G(O)uS dt, 0 <t<T
0

where 8 is a positive constant which can be chosen independently
of f and v.

From (4.26) and (a-11), we casily get
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' T T T
& (.50 [ lueotdae -y [Hion? ae <y [ 1e? ae
0 0 0
T
oy [ Hao-aeH1um)? ar
m 0
| .
cy ] mo,s Bt ot e a
0 0
N! T 0
h sy f I J B(o,t-g)v(a)dallf dt, 0<tT<T .,
0 -
|

for some positive constant y which is independent of f and v.
Our next estimate is obtained by the following procedure:
We apply the forward difference operator An to both sides of
(4.17) and make use of (4.20). After applying the Cauchy
inequality, we integrate from 0 to Tt and use (a-10). Then, we

divided by nz and let n tend to zero. The result of this

computation is

T - T
(5) .
| @an [ ruendae -9 [ 1rouen? a
! 0 0
@ ! T ] t .
' =98 1in L [ <c0,0000 0y (1), [cl0,e-0) (8,0 (8)de> at
nd0 n 0 n 5 n
T . T .
. <o [pElf ae v 9 [ oo, ovo)) de
0 0
T 0 . T )
co [0 [ moseovia ]« o [ Iam-aehIiml]
v 0 - 0
\ J
1
:
b.
{
. n
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8 :
| + 9 Jf llA'(ut;ut)U(t)Hé
0
T o0
+ 9 f I f [B(0,5)-B(u®,s)ut(s)ds| ] dt
5 0
’r o o)
+ 9 f | f B (ut;ut,s)ub(s)ds) 2 dt 0<t<T
i U, 0 ’ - max’
0 0

Out final estimate

T T
(4.32) [ <F(0)u(t),u(t)> dt - 7 f HF(O)&(t)ng dt
0 0
T
(3) : )
3 [ aton) e - Lirou@ig - 3o
0
< LIFvng « Tivold, o<t <t

follows easily from the identity
T
(4.33) f <F(0)u(t),u(t)> dt = <F(0)u(t),u(r)>

0 T
(3)

- <F(O)&(O),§(O)> - j <F(0)&(t), u(t)> dt.
0

Before completing the proof, we pause to comment on the
role of (4.9). By combining (4.19),(4.21),(4.25),(4.27),(4.29),
- (4.30),(4.31), and (4.32), we can bound % (u(t)) in terms of

the quantities which appear on the right hand sides of these
estimates. We want to show that the right hand sides are
™ appropriately '"small" if ¥, ¥, and 2 are small. This will

require that the integral
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[+ o]

A

0

(k)
h(tes)] v O(s)] 5, dsdt

Il 100

be small uniformly in tv > 0 if % is small. When h satisfies
(4.9), we have
T P
(4.34) [ hievs) v Os)) % dsae
0
0

e

k

OV 8

<c¢c ), vrt>0.

If, on the other hand, (4.9) does not hold, we can replace
(4.10) with (4.13) and the proof concludes in essentially the
same manner.

Observe that by combining (4.19),(4.21),(4.25),(4.27),
(4.29),(4.30),(4.31), and (4.32), we can dominate %(u(t)) by
a linear combination of the suprema over {0,t] of the right

hand sides of these estimates. Suppose now that

(4.35) F(f) + Y(v) <1,
and that

(4.36) #(u(r)) < v

for some v with 0 < v < 1. Then the supremum over [0,T] of

the absolute value of each term which appears on the right

hand side of (4.19),(4.21),(4.25),(4.27),(4.29),(4.30),(4.31),
or (4.32) can be majorized by one of vA #(u(t)),

MF(£)+ Z(V)}, or eh#(u(r)) + L {F(£)+2(v)} for each €>0,

where A is a positive constant which can be chosen independently
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of f,v,T,v, and ¢. Thus if (4.35) and (4.36) hold with

0 < © <1, we have an estimate of the form

(4.37)  #u(1)) < (ve)MF(u(T)) + M1+ {F(£)+ 2 ()},

valid for any € > 0, where M is a positive constant which 1is

independent of f,v,t, and v. If we set ¢ = %ﬁ, then (4.37)
yields
(4.38) 2 #(u(1)) < WD) + @M M) {F(£)+ 2 (M)},

It is now evident that if (4.35) and (4.36) are satisfied

with vz < min(1l, %ﬂ)’ then

(4.39) L(u(t)) < (BMeM) { F(£)+ P (V)]).

then

1 1
aME+M~ AM(8M%+1)

Choose &6, > 0 such that if { F(f)+ 2(v)} < ¢

0
#(u(0)) < 3 min(l, &), and set §, = 7 min(

O’

§ = min(l,GO,G (The existence of such a 60 follows easily

1)'
from the definitions of ¥, ¥, and 97 .)
Assume that { #(f)+%2/(v)} < §. Then, (4.39) implies that

there is no TE[O,Tm x) for which #(u(t)) = min(1, %ﬁ)’ This,

a

in conjunction with the fact that 2% (u(0)) < min(1, %ﬂ) implies
. 1

that #(u(t)) < min(1, Zﬂ) for all TG[O,Tmax), and the cycle

closes, yielding

(4.40)  #(u(1)) < (MM { F(£)+ 2(v)) v Te[0,T ).

Thus, (4.15) is established and the proof is complete. |
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Chapter 5. Materials with Fading Memory.

We now apply the results of the preceding chapters to
establish global existence of smooth solutions to the equations
of motion for materials with fading memory. Consider the
longitudinal motion of a homogeneous one-dimensional body with
reference configuration 4 = (0,1), a natural state, and unit
reference density*. As in the Introduction, we let u(x,t) be
the displacement at time t of the particle with reference
position x, and we use o and € to denote the stress and strain.

We assume that the stress is determined by the temporal
history of the strain through a constitutive relation of the

form
(5.1) o(x,t) = Z(et(x,*)),

where et(x,s) = e(x,t-s), s > 0, and ¥ is a real-valued
functional with domain in Vh for some influence function h.
Recall that Vh is the set of all measurable functions

w:[0,2) > R such that [ h(s)lw(s)lzds < o equipped with the
0

norm given by
(5.2) Il = 1w 1? + [ ns)iwes) 1as,
0

and that he€ Ll(O,m) is assumed to be positive and nonincreasing.

We assume that there is a neighborhood # of zero in Vh

x
The assumptions of homogeneity and unit density are made only
for the sake of simplicity.
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such that ¥ is defined and continuously Fréchet differentiable
on & . The Riesz Representation Theorem then implies that the

Fréchet derivative ¢' of ¥ admits the representation

(5.3) @' (w;W) = E(w)W(0) - | K(w,s)w(s)ds

OY——— 8

for some E: ¥ - R and K: & x[0,») » 1R such that
2 -
K(w,s)"h(s)
0
twice continuously differentiable on # and & x[0,~), respective-

1ds < » for each w € &. We assume that E and K are

ly, and define

S
(5.4) G(0,s) = E(0) - J K(0,£)dE,
0
and
(5.5) 6,00 = E(0) - [ K(0,6)ds.
0

Physically natural assumptions are

(5.6) E(0) > 0, G_(0) > 0,
k dk
(5.7) (-1)¢ S5 G6(0,s) >0, s >0, k=0,1,2
ds - -

and the history dependence will be '"dissipative" if

(5.8) & G(0,8) [ _y < 0.

Roughly speaking, (5.6),(5.7), and (5.8) say that the lineariza-
tion of (5.1) about the zero historv is the constitutive relation
for a physically reasonable linear viscoelastic material of the

Boltzmann type.
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In order to establish existence of solutions to the corre-
sponding equation of motion, we require that E and K satisfy
certain technical conditions. In particular, we assume that
there is a ball 6& of radius ry centered at zero in Vh and a

locally bounded function P:[O,rl) + R such that*

5.9 [E)] < 2wy,
(5.20)  [E'(wiz) | < Pl lzyly
.11 B tzysz,) ] < Pl Dzl Dzl
(5:12) [ kew,s)Pa(s)tas < plully)
0
(5.13) J K(w,s)“h(s) "tas < p(luly)
0
] . 2 -1 ) . 2
1) [ szt s < el eyl
0
(5.15) [ ka9 i) tas < pdivlly) izl
0
(5.16) [ Kwizgszy,)7h(e) as < Rl -l Eelz)E
0
vV w Eﬁl,zl,zz EVh,
and that

®
We use K'(+;+,s) to denote the Fréchet derivative of K(-,s)
holding s fixed and g(w,:) to denote the derivative of K(w,-)
holding w fixed. We use k' to denote the 'mixed derivative'.

Y
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(5.17) f {G(O,s)-Gw(O)}Zh(s)'lds < o,
0

We feel that these conditions are quite reasonable.

Many of the functions in this chapter are introduced
originally as mappings from [0,1] cross a time interval into R.
Such functions can also be regarded in a natural way as mappings
from a time interval into various spaces of functions defined
on [0,1]. We use the same symbol to denote each of these maps.
Throughout this chapter, Hk(O,l) stands for the usual Sobolev
space Wk’Z(O,l).

Consider now the history-boundary value problem of place,

viz.

(5.18)  u, (x,t) = %; Ful(x, ))+f(x,t), 0 <x <1, t >0,

(5.19) u(x,t)

v(x,t), 0 <x<1,t<0,

(5.20)  u(0,t) = u(l,t) = 0, == <t <o,

where f is the (known) body force and v is an assigned function
on [0,1]x(-»,0]. Of f we assume that
0 .ul 2 ul
(5.21) feC ([0,°);H"(0,1))nL"([0,);H"(0,1)),
0 2 2 2
(5.22) £, €C ([0,=);L7(0,1))nL"([0,=);L7(0,1)),

(5.23) £, €Li([0,=);L%(0,1)),

t
(5.24) f(o,t) = f(1,t) = 0, t >0,

and of v we assume that
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c3 ¥ ((-=,07;0%0,1)),

oW

(5.25) v €

k=0

(5.26) v(0,t) = Vxx(O,t) = v(1l,t) = Vxx(l,t)

(]
S
-
(g
A
o
-

3
(5.27) Vip (5,0) =~ G (v, (x, ))+E(x,0), 0 <x <1
We measure the sizes of f and v by
1 .
(5.28)  #(£f) = sup f (f2+fi)(x,t)dx
te[0,=) X
o 1
2. .2 2
+ J J (fx+ft+ftt)(x,t)dxdt,
00
and
1
(5.29)  2(v) = | (vi_ v . +vi.  )(x,0)dx
’ xxx xxt “xtt ’
0
o 1
s h(t) (vZ. _+vi . +vi,  }(x,-t)dxdt
XXX ~xxt “xtt ’ *
0 0

Theorem 5.1: Assume that the maps E:#~+ R, K:&x[0,») » R

are twice continuously differentiable, that (5.6) through (5.17)

hold and that the influence function is of the form
(5.30) h(s) = Me ¢%, M,c > 0.

Then, there exists a positive constant § such that for any f

and v which satisfy (5.21) through (5.27) with
(5.31) F(£) + Z(v) <8,
the history-boundary value problem (5.18),(5.19),(5.20) has a

. . 2
unique solution u€ C"([0,1]x(-»,»)). Moreover, U, U Uy U sl
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and u,, converge to zero uniformly on [0,1] as t » =,

Remark 5.1: Theorem 5.1 remains valid if we drop assumption
(5.30) and replace (5.21) with the strengthened smallness

condition

(5.32) F(f) +2(v)
o o ]
+ [ J J h(t+s){vixx+vixt+vitt}(x,-t)dxdtds < 6.
000

Remark 5.2: Theorem 5.1 remains valid if we replace (5.7) and
(5.8) with the assumption that the function m defined by
m(s) = G(0,s)-G_(0) is a strongly positive definite kernel

on [0,x).

Proof of Theorem 5.1: Our goal is to put (5.18),(5.19),(5.20)

in the abstract setting of Chapter 2 and then apply Theorem 4.1.

Define
(5.33) 2, = 1%(0,1)

(5.34) 2, = H}(0,1)

(5.35) Z, = 1% (0,1) nH(l)(O,l)

(5.36) Z, = {weH>(0,1):w(0) = W (0) = w(l) = w (1) = 0}

equipped with the norms* given by
1

k
.31 ulf = [ (g we)ax,
0 dx

*
These norms are associated in an obvious way with inner

products.
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The natural imbeddings 52k+1 c g%k are continuous and dense,
and a simple integration by parts shows that (2.8) holds. The
corresponding space & is H°1(O,1). let & and 27, k=1,2,3,
be constructed from the EQk as in Chapter 2.

Observe that if wv€ @é, then for each fixed x€[0,1], we

have wx(x,°) EVh and

(5.38) sup  [lw (x,°)]y < cqlll will,,
where ¢, is a positive constant which is independent of w.

1
Thus 1f H is a continuous functional on Vh’ then for w € Qa,

H(wx(x,-)) is well-defined for each x€[0,1], and is in fact a
continuous function of x.

If u is smooth, then (5.18) is equivalent to

(5.39)  u  -E(udu  + J K(ub,s)ul (x,s)ds = f,

0
which is of the form (2.15). However we cannot apply Theorem
4.1 directly because E is not defined on all of Vh' This purely
technical inconvenience will be overcome by constructing a smooth
map Y: 95 - 95 which contracts 9& to a small ball and is equal

to the identity on a smaller ball. We then consider
(5.40)  u, . ~E(¥uH Ju.. + | xerwh ,s)ub(x,s)ds = £
‘ tt x’7xx x’ xx 7
0

in place of (5.39), and apply Theorem 4.1. We show that the
history-value problem associated with (5.40) has a unique

solution u which is sufficiently 'small'" so that W(ut) = ut

T N S S U S S T S VP T S S P P . Vo
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for all t > 0, whence u is also a solution of (5.39).
Let 52 be a ball of radius T, centered at zero in @%.
For r, < rl/cl, where cq is the constant in (5.38), we can

define K:ﬁz +<& by
(5.41) AWz = -E(wx)zxx, weE &, z¢€ E%i.
Now clearly we have

<K(0)z,2z> = O]z} vz e%.

Moreover, A is continuously differentiable on 65 and
A'(w) is bounded for w € 62. Consequently, there is some
smaller ball &

3 3
in @é, and there are positive constants A; and « such that

, of radius r, < min(l,rz) centered at zero

(5.42)  <A(w)z,z> > Azl vwe &y, 2 €2y,
and
(5.43)  E(¥(W) 2k YweE B,

Also, for each w €¢63, A(w) 1s invertible with
3

(Tf\(w))'1 € n 5f(£%k_2;grk) and there is a constant Hy such
k=2

that

(5.44)  am) Yl <zl , vwed,, zez.

Let ¢:[0,®) > [0,~) be a c” smooth function which satisfies
2
s
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(5.46) $(8) >

\Y2
f??ﬁ
()]
I\J!"C
[FS I o8]
I A
['aa]
| A
H
[FNI N
-

and
(5:47)  6(8) = i, £ 2,
and define V: @E + 7 by
(5.48) V(W) = — T .
o (HIwlll3)

Observe that ¥ is C smooth,

T
(5.49) ¥(w) =w vwe 2, with [[w]l], < 72 ,
and

(5.50) |H‘Y(w)|||2 < T4 vV w € 93.

Now, define A: 93 +% and B: ? x [0,0) & by
(5.51) A(W)z = -E(Y(W) )z, WED, z € L
(5.52) B(w,s)z = K(Y(W),,S)z ,» W€D, s> 0, z EIQ&,

and set

| v
o
-

(5.53)  C(0,s) [ B(0,£)dE , s
S

(5.54) F(0) = A(0) - C(0,0).

Note that

(5.55)  C(0,s)z = [G(0,5)-G,(0)]2y s s >0, z €2,
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and

(5.56) F(0)z = Gm(O)zxx , z 6521.

It follows immediately from our construction of A,B,C, and
F, and (5.6) through (5.17) that (a-1),(a-2),(a-3),(a-7),(a-8),
and (a-9) are satisfied, and a simple computation shows that
(a-4) is satisfied. As regards (a-5), the linear initial

value problem (2.26),(2.27) here takes the form

(5-57)  Z,(x,t) - E(¥(wH) D2, (x,t) = g(x,t),

0 <x<1, 0<t

| A
~3

(5.58) Z2(0,t)

Z(1,t) =0, 0<t<T,

(5.59) Z(x,0) = Zo(x), Zt(x,O) Zl(x), 0 <x < 1.

3-k,

3
Ifwe€ N W ((-w,T];éfk), then the function
k=0

a:[0,1)x[0,T] » R defined by

(5.60) a(x,t) = E(W(wt)x), 0 <x<1, 0<t<T
satisfies

(5.61)  a€wW *®([0,1]x[0,T]),

and

(5.62) a(x,t) >x >0, 0<x<1, 0<tc<T,
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By standard theory for linear hyperbolic equations, (5.57),
3 .
(5.58),(5.59) has a unique solution Z € n € ¥([0,T1;2,),

provided that Z, 6.92, 2y 6522, and g satisfies (2.24),(2.25).
Thus (a-5) is satisfied.
It remains only to check (a-10) and (a-11). Define

m:[0,o}) »IR by
(5.63) m(s) = G(0,s)-G_(0), s > O.
Then, by (5.7),(5.8),(5.12),(5.13), and (5.17), m satisfies

x a¥
(5.64) -1 S m(s) >0, s >0, k=0,1,2
ds - -

(5.65) d ms)y 20, s>o0,
and
2,1

(5.66) me W’ (0,=),

From Corollary 2.2 of [14], we deduce that m is a strongly
positive definite kernel on [0,»). It now follows from Lemma
4.2 of [15] that (a-10) is satisfied. Moreover, Lemma 3.2 of

[8 ] implies that the scalar Volterra operator L defined by
t

(5.67) (L) (t) = E(0)x(t) + f m(t-1)x(1)dr
0

has a resolvent kernel which belongs to Ll(O,m). This guarantees

that (a-11) is satisfied.
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It follows from (5.21) through (5.27) that f and v satisfy
(4.1) through (4.5). Thus, Theorem 4.1 implies that for §
sufficiently small, the history value problem (2.15),(2.16) has
a unique solution

3

(5.68) we n CF((w=);2).
k=1
In addition, the restriction of u to [0,») satisfies

(5.69) u €

) > K(0,=)5 @2,

0

DWW

0 w32 (10,2); 27).

(5.70) u €
k

i Dt

The estimate (4.12) shows that by further restricting the size

T
of 8§ if necessary, we have |||utH|2 < 72 for all t > 0 so that

t

W(ut) = u  for all t > 0, whence u is also a solution of (5.18).

Clearly u satisfies (5.19) and (5.20).
By (5.69) we have

(5.71) u € C¥((-=,=);1%(0,1)),

xx*Uxt*Yet

and since the injection of Hl(O,l) into C[0,1] is continuous,

this implies that
(5.72)  u€C2([0,1]x(-,)).

Finally, it follows from (5.68),(5.69) that as t » =,

unif.
(5.73) uyux’ut’uxx’uxt’utt loy[] 0.

The proof is complete. W
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We now discuss boundary conditions of traction. Since the

reference configuration is a natural state, we require that
(5.74) £0) = 0.

Consider the boundary condition

(5.75) o(xo,t) =0, e <t < ®,

Xg = 0 or Xg = 1. Implicit in (5.75) is the assumption that
le(xo,t)l is small enough so that et(x0,°)€é7 for all t. Using

the constitutive relation (5.1), we rewrite (5.75) as

(5.76) St xp,)) =0, m<tc<o,

which is a functional equation for e. Clearly (5.76) holds if
(5.77) e(xo,t) = 0, -®o <t < o,

It is straightforward to verify that if ¥ satisfies the
assumptions of Theorem 5.1 and e(xo,t) = 0 for all t < §, then
(5.75) and (5.77) are equivalent. Wg assume that s(xo,t) =0
for all t < 0 and replace (5.75) with (5.77).

Consider the history-boundary value problem
(5.78)  u  (x,t) = & Fui(x,7)) + £(x,t), 0 <x<1,t>0,

(5.79) u(x,t) = v(ix,t), 0 <x<1, t <0,

Conditions (5.75) and (5.77) are actually equivalent under
the weaker assumption that s(xo,-) EWJ’Z(-w,O).
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(5.80) ux(O,t) = ux(l,t) = 0, - <t < o,

In place of (5.24) and (5.77) we assume that f and v satisfy

1

(5.81) J f(x,t)dx = 0, t >0,
0
1

(5.82) J v(x,t)dx = 0, t <0,
0

and

(5.83) vx(O,t) = vx(l,t) =0, t < 0.

Theorem 5.2: Assume that the maps E: &+ R, K: & x[0,») + R

are twice continuously differentiable, that (5.6) through (& :7)
hold and that the influence function h is of the form (5.30).
Then, there is a positive constant 61 such that for any f and

v which satisfy (5.21),(5.22),(5.25),(5.27Y,(5.81),(5.82), and
(5.83) with

(5.84) F(£) +2(V) < 8y,

the history-boundary value problem (5.81),(5.82),(5.83) has a
unique solution uEICZ([O,l]X(-w,w)). Moreover, U Uy Uy U sl gy

and u,, converge to zero uniformly on [0,1] as t + « .

A similar result holds for the mixed problem

o3

(5.85) ug, (x,t) = ?(u;(x,-)) s+ f(x,t) 0<x<1,t >0,

X
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1]

(5.86) u(x,t) vix,t), 0 <x<1, t<0,

(5.87) u(0,t)

i

ux(l,t) =0, ~w<t <o,

Now, in place of (5.24) and (5.25), we assume that f and v

satisfy

]

(5.88) £(0,t) 0, t >0
and

(5.89) v(0,t)

VXX(O,t) = v(l,t) =0, t< 0.

Theorem 5.3: Assume that the maps E:# - R, K:&x [0,0) + R

are twice continuously differentiable, that (5.6) through (5.17)
hold and that the influence function h is of the form (5.30).
Then, there is a positive constant 62 such that for any f and v
which satisfy (5.21),(5.22),(5.23),(5.25),(5.27),(5.88) and
(5.89) with

(5.90) F(£) + Y(V) < 8y,

the history-boundary value problem (5.85),(5.86),(5.87) has a
unique solution uE:CZ([O,l]X(-w,w)). Moreover, UsUy sy U U s
and u., converge to zero uniformly on [0,1] as t + « .

Remarks 5.1 and 5.2 also apply to Theorems 5.2 and 5.3.
The proofs of these theorems are almost identical to the proof
of Theorem 5.1. Other types of boundary conditions can be
handled similarly.

With certain modifications, the procedure presented here

can also be used to establish global existence of smooth

oy
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solutions to certain appropriate history value problems
associated with the motion of multidimensional bodies composed
of materials with fading memory. For n-dimensional bodies, we
require spaces EZO,EZ ,..,s%h, and @i, Deyeun Qﬁ where

m = [n/2], and that A and b be defined on 9%_1 and
Q/m_1X[O,w) respectively. We then seek a solution u of

m
(2.15),(2.16) which satisfies u € n C" k((-oo.oo);gzk). The

required a priorl estimates become extremely lengthy.

— e a A m i o " PP G D
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